$$I$$
. The classes Σ^{I}

7. Def: $\Sigma'(f) = \{ x \in M \mid corank (df_x) = i \}$ Note: $\Sigma^{\circ}(f) = rog. pts$.

8. Thus: For a "generic" map $f: M \rightarrow N$ the sets $\Xi^{i}(f)$ are submanifolds of Mwith $Codim \ \Xi^{i}(f) := dim M - dim \ \Xi^{i}(f)$ $= i \cdot (|olim N - dim M| + i)$ $\int_{1}^{r} Coraule = (dim M - r) \cdot (dim N - r) w. revuldt$

(if this nr. is neg., then
$$\Sigma'(f) = \phi$$
).

-)
$$Z \mapsto Z^2$$
 is generic as holomorphic map,
but not as a smooth map.
-) generic smooth maps from $IR^m - IR^n$
have $Z^m(f) = \phi$, more generally
 $Z^i(f) = m - i^2$

Consider
$$\mathcal{L}_{mn} \coloneqq Hom(\mathbb{R}^n, \mathbb{R}^n) \cong \{A \in \mathcal{M}_{n,m}(\mathbb{R})\} \cong \mathbb{R}^n$$

$$\forall A \in M_{um}$$
 $\exists R \in G(u, L \in G(u)$
S.t. $LA R' = A_0 := \begin{pmatrix} Ir & 0\\ 0 & 0 \end{pmatrix}$
where $r = rank(A)$

J. Lemma The set of all matrices of rank
$$r$$

 $M_{n.m}^{r} = \{ A \in M_{n.m} \mid rank(A) = r \} \subset M_{n.m} \text{ is}$
a submanifold with codim $M_{n.m}^{r} = (m-r) \cdot (n-r)$
 $= i (|n-m|+i)$

Fix r and let
$$A \in M_{nm}$$
. After changing
coordinates we can assume
 $A = r \left(\begin{array}{c} B & C \\ B & C \end{array} \right)^{n}$ with $B \in GL_{r}$
 $n = r \left(\begin{array}{c} D & E \\ D & E \end{array} \right)^{n-r}$

 $\begin{pmatrix} B & O \\ O & E - D \overline{B'} C \end{pmatrix}$ which has rank r $E = DB'C E M_{n-r,m-r}$

1. V vect. space, XX lin. subspaces are called transversal (in V), XAY, i£ $\bigvee = \chi + \chi$ (or $\chi_{\gamma} \chi = \phi$) l e.g.: $L, \frac{1}{1}, L,$ $\frac{1}{2}$ 12, 2. f. M-N smooth, SCN submit. f is transversal to S at XEM if either (ix) & S or $df_{x}(T_{x}M) + T_{f(x)}S = T_{f(x)}N$

10. Def.:

II. Prop.:
If
$$f dS$$
, then $f'(S)$ is a submit of M
with $codim f'(S) = codim S$.

Proof: Find
$$F: M \longrightarrow \mathbb{R}^{n-k}$$
 $(k = \dim S)$ with
 $F^{-1}(0) = f^{-1}(S)$ and use preimage theorem.
Let $y \in S$. S submit $= \sum [ocally \ there are coordinates$
 $(y_{1}, \dots, y_{k-1}, y_{k+1}, \dots, y_n)$ s.t. $S = (y_{1}, \dots, y_{k-1}, O)$
 $Pefine g: N \longrightarrow \mathbb{R}^{n-k}$, $(y_{1}, \dots, y_n) \mapsto (y_{k+1}, \dots, y_n)$
Then g is smooth with $S = g^{-1}(O)$
 $1 \longrightarrow$

and
$$d_{giver,v}$$
, surjective.
Retinance than
=) Ever $d_{gy} = T_y S$,
Define $F = gof : M \rightarrow R^{u-k}$. Then F is
supported in $F(o) = f'(S)$ and DF_x is surjective
for all $x \in f'(S)$ by transversality:
 $f f S : df_x (T_xM) + T_{f(x)} S = T_{f(x)} N$
 $e^{u} d_{g(x)} !$
("apply" $d_{g(x)}$ to get
 $d_{g(x)} df_x (T_xM) + d_{g(x)} (ker d_{g(x)})$
 $dF_x (T_xM) = d_{g(x)} (Ker d_{g(x)})$
 $= d_{g(x)} (T_{f(x)}N)$
 $= R^{u-k}$

Werre getting closer to an idea of the term "generic"...

$$\frac{12 \text{ Thm}:}{12 \text{ Thm}:} (weak transversality theorem)$$
For M closed, SON closed, the set of
maps transversal to S,
 $C_{dS}^{\infty}(M,N) = \{f \in \underline{C}^{\infty}(M,N) \mid f \notin S\}$
(orms an open dense set in $\underline{C}^{\infty}(M,N)$,
both in the weak and strong topology.
Four all weak and strong topology.
For all bein
weak a same but condition volved
to hold for compact sets only.
More on these topologies later (or see the book "Different
Hal Topology" by Hirsch)